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Abstract Non-rigid and partial 3D model retrieval are two significant and challeng-
ing research directions in the field of 3D model retrieval. Little work has been done
in proposing a hybrid shape descriptor that works for both retrieval scenarios, let
alone the integration of the component features of the hybrid shape descriptor in an
automatic way. In this paper, we propose a hybrid shape descriptor that integrates
both geodesic distance-based global features and curvature-based local features.
We also develop an automatic algorithm to generate meta similarity resulting from
different component features of the hybrid shape descriptor based on Particle Swarm
Optimization. Experimental results demonstrate the effectiveness and advantages of
our framework, as well as the significant improvements in retrieval performances.
The framework is general and can be applied to similar approaches that integrate
more features for the development of a single algorithm for both non-rigid and
partial 3D model retrieval.

Keywords 3D model retrieval · Non-rigid models · Partial similarity retrieval ·
Hybrid shape descriptor · Meta similarity

1 Introduction

With the increase in the number of available 3D models, the ability to accurately and
efficiently search for 3D models is crucial in many applications such as Computer-
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Aided Design (CAD), on-line 3D model shopping and 3D game, movie and anima-
tion production. As a result, 3D model retrieval has become an important research
area. Non-rigid models are commonly seen in our world, such as human beings and
animals, thus there are a lot of needs to retrieve non-rigid models. Measuring the
partial similarity between two objects, which belong to different classes but share
some substantially similar parts, is also important for certain applications such as
example-based 3D modeling and industrial prototyping.

Non-rigid 3D model retrieval (comparing non-rigid 3D models with different
poses or articulations) is a challenging research direction for the community of 3D
model retrieval. Compared to generic 3D model retrieval, partial similarity 3D model
retrieval (measuring the partial similarities between models which are dissimilar but
share similar parts) is also more difficult and much less studied. Geodesic distance-
based global features have intrinsic advantages in characterizing non-rigid 3D models
and also have shown their superiorities in recognizing deformable models, which has
been demonstrated by Smeets et al. [39, 40, 62, 63]. By utilizing geodesic distance-
based global features, multidimensional scaling (MDS) techniques are effective to
transform non-rigid models into an embedding space where the representations are
unique and isometry-invariant, which is promising for a further improvement in
the retrieval performance. On the other hand, employing local features and Bag-
of-Words [36] framework has demonstrated their apparent advantages in dealing
with partial similarity retrieval, such as [31] and [68]. Curvature is an important local
feature and it is the basis of several other important local features, such as Shape
Index [28] and Curvedness [28].

Motivated by this, our target is to utilize both geodesic distance-based global fea-
tures and curvature-based local features together with the Bag-of-Words framework
to develop a generic 3D shape retrieval algorithm that can be used for both non-rigid
and partial 3D model retrieval. Geodesic distance-based (with and without MDS)
and curvature-based features show different properties and retrieval performances
in recognizing non-rigid and partial 3D models. To automatically combine these
three features, a meta similarity generation algorithm based on Particle Swarm
Optimization (PSO) [14] has been proposed to fuse their distance matrices.

Experiments on both non-rigid and partial 3D model benchmarks have demon-
strated the significant improvements in retrieval performances after utilizing our
framework as well as the superior performance obtained on each benchmark. Our
proposed feature based on geodesic distance and MDS also shows superiority and
robustness in the performances for both non-rigid and partial 3D model retrieval.
The framework of our approach is shown in Fig. 1 and it is general and can be
extended to integrate different or more features to develop other similar unified
retrieval algorithms for both non-rigid and partial 3D model retrieval, let alone
generic 3D model retrieval. The algorithm presented in this paper is a substantial
extension of the work proposed in [34]. This paper is built upon our two prior
publications [34, 35]. It includes the following four new contributions: (a) we propose
a new feature named MDS-ZFDR based on multidimensional scaling (MDS) tech-
nique and the ZFDR feature proposed in [35] for the non-rigid and partial retrieval.
The feature is important for our further improvements in the retrieval performance
and we also demonstrate the much better performances compared to those in [34]
after integrating the MDS-ZFDR feature; (b) we perform additional experiments
on another dataset used in the SHREC 2010 non-rigid retrieval track [41]; (c)
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Fig. 1 Overview of our approach

we also present an analysis for the three component features in terms of their
respective performances in retrieving different types of models (non-rigid or partial)
and demonstrate the robust and superior retrieval performances of our newly added
feature MDS-ZFDR in terms of both non-rigid and partial similarity retrieval; (d)
in addition, we also add the comparative analysis between the PSO algorithm and
the brute-force approach for the meta similarity generation, and the computational
complexity analysis of our algorithm as well.

The paper is organized as follows. We review the related work in Section 2.
Section 3 introduces the hybrid 3D shape descriptor. Section 4 presents our 3D model
retrieval algorithm, together with the method of weight assignment for the meta
similarity based on Particle Swarm Optimization. We give in detail the experiments
in Section 5 and conclude the paper and list the future work in Section 6.

2 Related work

During the past few years, non-rigid and partial 3D model retrieval have received
more and more attention. Local features, together with the Bag-of-Words frame-
work, based approaches have demonstrated successful applications in dealing with
the non-rigid and partial 3D model retrieval. Combining and integrating heteroge-
neous features is also an important issue if we employ a hybrid shape descriptor
comprising several features. We give a brief review for these three topics as follows.

2.1 Non-rigid 3D model retrieval

Due to the intrinsic properties, geodesic distance and spectrum analysis approaches,
such as Laplace-Beltrami spectrum analysis methods and Heat Kernel descriptors,
have shown advantages in dealing with the retrieval of non-rigid 3D models. Mul-
tidimensional scaling (MDS) approach is an important transformation to apply the
algorithms for rigid models to non-rigid models. In our proposed algorithm, we also
utilize the above-mentioned two techniques, thus we present a review on them in this
section.
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2.1.1 Geodesic distance-based descriptors

Geodesic distance is an inelastic deformation invariant distance metric, thus popular
for the analysis and recognition of non-rigid objects. Typically, the extracted geo-
desic distance-based feature for 3D is a Geodesic Distance Matrix (GDM) measuring
the distances among a set of points sampled on the surface of a 3D object. To
deal with deformable 3D model retrieval, Smeets et al. [62] proposed a modal
representation method based on the Singular Value Decomposition (SVD) of the
GDM of a 3D model. They utilized several largest eigenvalues of a GDM as the shape
descriptor and this modal approach outperforms the geodesic distance distribution-
based method. To improve the retrieval performance further, in [63], they advised
to combine GDM with diffusion distance tensors (DDT) to utilize their respective
advantages. They found that GDM has advantages in differentiating small inter-
class variations while DDT performs better with respect to noise and topology
robustness. In the SHREC 2011 Non-rigid watertight shape retrieval track [39, 40],
Smeets et al. further proposed a method by combining GDM and another method
called Scale Invariant Feature Transform (SIFT) [47] for meshes (meshSIFT) [48]
and they achieved the best retrieval performance among the nine participants. We
utilize the geodesic-based global features based on the GDM analysis and propose a
modified algorithm to compute the features and incorporate it into our hybrid shape
descriptor.

Rabin et al. [52] devised a geodesic distance-based 2D and 3D shape retrieval
algorithm. They employed several global or local geodesic distance-based features
(e.g. geodesic distance distribution and geodesic quantile measures) to form a hybrid
feature set comprising several distributions and utilized Wasserstein metric [71] to
measure the distance between two joint distributions. Different from the above
algorithms which use 2D Geodesic Distance Matrix (GDM) to represent a 3D model,
Hamza and Krim [22] proposed to use a geodesic shape distribution. The idea is
similar to shape distribution [51] but they adopted the kernel density estimation
(KDE) to associate with the geodesic distance shape distribution of the model to
approximate its probability density function and utilized Jensen-Shannon divergence
distance to measure the dissimilarity of two probability distributions.

2.1.2 Laplace-Beltrami spectrum analysis methods

Spectrum analysis, which typically includes Laplace-Beltrami spectrum analysis
methods and Heat Kernel descriptors, are another two important techniques for non-
rigid 3D model retrieval and we will also compare with several typical algorithms of
them in our experiments. Thus, we have a review in the following two sections.

Spectrum analysis on 3D models has been steadily become an important research
field in the community of geometry processing and analysis. Two good surveys
about spectral geometry processing methods are presented by Zhang et al. [74] and
Lévy [33], respectively.

The pioneer work of applying Laplace-Beltrami spectrum for shape analysis is
proposed by Reuter et al. [54] in 2006. They defined a 3D shape descriptor which
they called “Shape-DNA”. It is composed of the eigenvalues of the Laplace-Beltrami
operator of a 3D model.

Besides the standard definitions of Laplace-Beltrami operators, Wu et al. [72] pro-
posed a symmetric mean-value Laplace-Beltrami representation based on manifold



Multimed Tools Appl

harmonic analysis. They extended the Laplace-Beltrami operator representations
to a new representation which has a better reconstruction quality. Based on this,
they further performed spectral analysis on a local region and combined it with the
global version to form a hybrid one for both global and partial similarity matching.
The basic framework of feature extraction is still as the same as its precedents, but
utilizes a pyramid matching method for the feature matching process based on the
histogram-based representation. Unfortunately, they did not perform the algorithm
on a database level and only showed one retrieval example.

2.1.3 Heat Kernel descriptors

Heat kernel kt(x, y) is defined as the probability/amount of the heat that has been
transferred from a unit heat source point x to point y. It is the fundamental solution to
the heat equation, an important function to study heat conduction and diffusion. We
can also use heat kernel for Laplacian spectrum analysis based on the relationship
between their eigenvalues and eigenfunctions: ρi = e−tλi , where ρi and λi are the
eigenvalues of heat kernel and Laplace-Beltrami operators respectively, and they
also have the same eigenfunctions φi for the corresponding eigenvalues ρi and λi.

Sun et al. [64] first proposed a novel shape descriptor named Heat Kernel
Signature (HKS) in 2009. HKS measures how much percentage of the heat will
transfer from a point on the surface of a model to other points at time t. It has many
good properties, such as isometry-invariant, multi-scale, robust and informative. The
Heat Kernel Signatures at all the points of a model can uniquely define the model up
to isometry.

Recently, Bronstein and Kokkinos [9] developed a scale-invariant heat kernel
signature (SI-HKS) for non-rigid shape recognition. It apparently outperforms HKS
and “Shape-DNA” on a database named ShapeGoogle [8], which comprises both
non-rigid and rigid models. Raviv et al. [53] proposed a volumetric heat kernel by
extending HKS to an isometry-invariant volumetric descriptor.

2.1.4 Multidimensional scaling

Multidimensional scaling (MDS) maps the feature dissimilarities among a set of
sample points on the surface of an object into the same number of points in a
new space where their distances match the original feature dissimilarities. One
representative work in this field is the MDS-based surface flattening algorithm
proposed by Schwartz et al. [57]. Elad and Kimmel [15] further proposed a bending
invariant representation based on MDS and they evaluated the scaling accuracy
and isometric surfaces classification performances of three MDS methods including
Classical MDS [7], Least-Squares MDS [29] and Fast MDS [16]. They found that
Fast MDS is the most fast but also the least accurate; while Least-Squares MDS is
the most accurate but the slowest as well. Classical MDS [7, 15] optimizes the sum
of squared differences between the distances and the dissimilarities (transformed
into a form of Frobenius norm) by finding a set of new positions in the mapping
space for the features to make their distances match the dissimilarities as closely as
possible. Least-Squares and Fast MDS methods are two computational algorithms to
solve another type of MDS, named Stress MDS [21, 29]. Stress MDS defines a stress
function by normalizing the sum of squared differences between the distances and
the dissimilarities by the sum of squares of the dissimilarities. SMACOF (Scaling
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by Minimizing a Convex Function) algorithm [7, 21] is one of the best methods to
implement the Least-Squares MDS.

In addition to the above mentioned multidimensional scaling techniques, Sam-
mon [56] proposed a nonlinear mapping criteria to achieve a similar purpose and
we denote it as Sammon MDS. It defines a mapping error by normalizing the sum
of squared differences between the distances and the dissimilarities by the sum of
the dissimilarities. Sammon MDS adopts a steepest descent algorithm to optimize
the mapping error. Recently, Lian et al. [38, 44] proposed a feature-preserved 3D
canonical form for non-rigid watertight 3D models by deforming a 3D model against
its MDS embedding result to reduce the feature distortions during the MDS process
and keep more original feature details, as well. Lian et al. [43] proposed a non-rigid
shape retrieval algorithm by fusing the MDS technique, Bag-of-Words framework
and a multi-view shape matching scheme [42].

Based on the MDS techniques and one of our previous hybrid shape descriptor
ZFDR [35] which is for generic/partial 3D model retrieval, we propose a new
component feature MDS-ZFDR in Section 3.3. We also compare the retrieval
performances of the aforementioned different MDS approaches in the experiment
section (Section 5.1).

2.2 Partial 3D model retrieval

In this section, we review existing partial 3D model retrieval algorithms, as well
as two important techniques involved in partial similarity retrieval: local shape
descriptors and the Bag-of-Words framework.

2.2.1 Existing partial similarity retrieval techniques

Existing partial similarity retrieval algorithms can be mainly categorized into two
groups: (1) graph-based approach, for which typical examples includes Tierny et
al.’s [67] Reeb Pattern Unfolding (RPU) method, Biasotti et al.’s [5] Extended Reeb
Graph (ERG) algorithm, and Cornea et al.’s [12] skeleton matching-based method
(CORNEA); (2) local feature-based approach, such as Toldo et al.’s [68] Bag-of-
Words component Feature-based method (BoF), Li and Godil’s [37] Concentric Bag-
of-Words (CBW) method, Liu et al.’s Shape Topics [46], Cohen-Or’s salient local
features [18], as well as our proposed curvature-based local features.

RPU [67] first segments the model based on reeb graph and then encodes the
relationship among parts by utilizing a dual reeb graph. Finally, it speeds up the
partial matching by proposing the idea of “reeb pattern” for a reeb graph. ERG [5]
is based on the Extended Reeb Graph (ERG) shape descriptor, which contains not
only structural but also geometrical information of a model. To find the maximum
common sub-parts between two ERGs, a directed attributed graph matching method
is employed to perform the partial matching. CORNEA [12] extends the skeleton-
based matching framework proposed by Sundar et al. [65]. It develops more robust
and efficient skeletonization and matching algorithms by propagating normals to
the interior of a 3D model and utilizing a distribution and Earth Mover’s Distance
(EMD) [11]-based graph matching method, respectively.
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BoF [68] applies the Bag-of-Words (BoW) [36] framework for 2D to 3D. First,
it extracts local features for segmented subparts of a 3D model. Then, it clusters
the local features into a set of 3D codewords. Finally, it computes an occurrence
histogram, with respect to the 3D codewords, for a subpart or a complete model and
regard it as its shape signature to perform partial matching. CBW [37] incorporates
spatial information into the Bag-of-Words framework by applying BoW to a set of
3D shape portions falling in the regions of several predefined concentric spheres. It
utilizes spin image [26] as local feature and tests the parts-based retrieval scheme on
an engineering shape benchmark. Shape Topics [46] also uses the spin image local
feature and also adopts a similar Bag-of-Words [36] framework for partial matching.
Salient geometric features [18] are defined based on a local region characterized by
curvature and area. They are employed to extract local shape descriptors to represent
the salient parts of a 3D model and thus used to match similar parts of different
models.

In addition, Liu et al. [45] proposed to learn a ground distance to adapt the Earth
Mover’s Distance (EMD) framework for partial similarity matching. Attene et al. [3]
extended the coarse-to-fine strategy to part-in-whole 3D shape matching scenario
to shorten the matching time. They utilized layered or onion 3D shape descriptors
and in an iterative manner, they used increasing portions of the features for the
search each time till to the whole descriptor. Recently, Sfikas et al. [58] proposed
a conformal factor-guided topology-based non-rigid 3D model retrieval algorithm
named ConTopo++ and also achieved state of the art performances in both non-
rigid and partial 3D model retrieval.

2.2.2 Local shape descriptors

3D local shape descriptors together with the Bag-of-Words (BoW) framework, such
as our curvature-based local features, is commonly used in partial 3D model retrieval.
We review several local shape descriptors and the BoW scheme in this and next
sections, respectively.

Heider et al. [23] presented a comparative evaluation of several local shape
descriptors including three types: ring-based (e.g. using normals and curvatures), ex-
panding (e.g. mesh saliency [32]) and iterative (like heat kernel signature HKS [64]).
They evaluated their properties of stability and discrimination ability in shape match-
ing via experiments on several models. Their results show that normal distribution
and mean curvature perform the best in both stability and discrimination power.
Unfortunately, they did not present retrieval performance evaluation results based
on some publicly available standard 3D model benchmarks. Tang and Godil [66]
further performed an evaluation of the top six local shape descriptors in [23] based
on the Bag-of-Words framework and the benchmark used in the SHREC 2011 Non-
rigid 3D watertight models retrieval track [39, 40]. Koenderink and Doorn [28]
proposed a curvature-based local feature named Shape Index which measures
the local topological/convexity geometry, such as ridge, saddle, cup and cap; and
another local feature called Curvedness which measures the amount of curvature.
3D shape spectrum [6] based on Shape Index distribution was also proposed as the
MPEG 3D shape feature standard. A local 3D shape descriptor named conformal
factor [4] was proposed to depict the amount of local work to transform a model
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into a sphere. Examples of other local shape descriptors include Extended Gaussian
Images (EGI) [24], Spin Image [26], Curvature Maps [20], salient local features [18],
meshSIFT [48] and Concentric Ring Signature (CORS) [49].

2.2.3 Bag-of-Words framework

In the field of computer vision, Li and Pietro [36] proposed to apply the Bag-of-
Words (BoW) framework to unsupervisedly learn the categories of natural scenes.
Local regions of the image of a scene are clustered into a set of intermediate
representations, named codewords. Then, the probability distribution of the local
regions with respect to the clustered codewords, is used to represent the image and
classify the category of the image.

Recently, the Bag-of-Words framework has also been successfully applied into 3D
model retrieval. It has demonstrated successful applications in either view-based or
geometry-based 3D model retrieval and it also has apparent advantages in partial
similarity 3D model retrieval, such as [68] and [31]. To reduce the computational
cost for distance computation, Ohbuchi et al. [17, 50] encoded the Scale Invariant
Feature Transform (SIFT) [47] features of a set of depth views of a 3D model into
a histogram by utilizing the BoW approach. The above method is a typical example
of application of the BoW framework into view-based 3D model retrieval approach.
Two representative examples of applying the BoW framework into geometry-based
retrieval technique are Toldo et al. [68] (Section 2.2.1) and Lavoué [31]. Lavoué [31]
applied the BoW framework to the Laplace-Beltrami spectrum features of a set of
uniformly sampled points on the surface of a 3D model by projecting the geometry
onto the eigenvectors of the Laplace-Beltrami operator and also achieved superior
performance in partial similarity retrieval.

2.3 Meta similarity

Employing several features together in 3D shape retrieval needs a solution of
integrating them properly to make them complement each other to achieve the
optimal performance. In the research field of 3D model retrieval, compared to new
shape descriptors, this topic has received less attention, let alone the automatic
approaches of weight assignment to generate the meta similarity.

We can merge several feature vectors directly or merge the distances resulting
from different features, as well. Akbar et al. [1] combined two features extracted
from surface and volume respectively by assigning the weights based on the prop-
erties of the two features and they tested on both merging schemes. Unfortunately,
the retrieval performance improvement is not apparent. Bustos et al. [10] proposed
a query-adaptive weighting scheme, that is, adaptively assigning the weights at query
time, based on a priori estimation measure named entropy impurity which takes
the query object into account and it also shows promising improvements. Daras et
al. [13] investigated several factors that affect retrieval performance, such as feature
selection, dissimilarity metric, feature combination and weight optimization and they
suggested that more focus should be given to the efficient combination of low-level
descriptors rather than the investigation of the optimal 3D shape descriptor. In this
paper, we proposed a Particle Swarm Optimization (PSO)-based meta similarity
generation method to fuse the distance matrices resulting from different component
shape descriptors and also achieved superior performances.
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3 Hybrid 3D shape descriptor

In this section, to represent a 3D model we propose a hybrid shape descriptor
composed of a curvature-based local feature vector VC designed by us, a geodesic-
based global feature vector VG, and a MDS-based ZFDR global feature vector VZ

devised by us as well, described as follows. Local feature VC is specially designed for
the partial similarity 3D model retrieval; while geodesic distance-based feature VG is
incorporated into the hybrid shape descriptor to better represent non-rigid models;
finally generic MDS techniques and ZFDR feature extraction are further utilized in
our shape representation basically for the improvement of retrieval performance.

3.1 Curvature-based local feature vector: VC

Extracting local features are important for partial similarity 3D model retrieval. First,
we propose a curvature-based combined local shape descriptor for each vertex of a
3D model and after that we apply the Bag-of-Words framework to generate the local
shape descriptor distribution as our proposed local feature vector VC. To extract the
local shape descriptor, we need to define its two basic components: local support
region and local features. We regard the adjacent vertices of a vertex as its local
support region and consider the following first three curvature-based local features.

3.1.1 Curvature index feature

Curvature is an important feature to characterize the local geometry. Based on
curvature, Koenderink and Doorn [28] proposed Shape Index and Curvedness.
Curvature Index [23] further maps Curvedness values into a reasonable range using
a log function. For a vertex p, its Curvature Index CI is computed as follows,

CI = 2

π
log

⎛
⎝

√
K2

1 + K2
2

2

⎞
⎠ , (1)

where K1 and K2 are the two principal curvatures in the x and y directions
respectively at the point of vertex p. We adopted the vertex curvature computation
method proposed in [55].

3.1.2 Curvature index deviation feature

To measure the tendency of the Curvature Index change in a local support region
of a vertex, we compute the standard deviation Curvature Index difference of the
adjacent vertices of the vertex p,

δCI =
√∑n

i=1 (CIi − C̃I)
n

, (2)

where CI1, CI2,. . .,CIn are the Curvature Index values of the adjacent vertices of p
and C̃I is the mean Curvature Index of all the adjacent vertices.
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3.1.3 Shape index feature

Shape Index [28] is a feature that has been applied into generic 3D shape retrieval.
Here, we utilize it within the Bag-of-Words framework for non-rigid and partial 3D
model retrieval. Its definition is as follows,

SI = 2

π
arctan

(
K1 + K2

|K1 − K2|
)

, (3)

where K1 and K2 are the two principal curvatures in the x and y directions
respectively at the point of vertex p, and SI ∈[−1,1]. If the two principle curvatures
are equal, SI = −1 or 1 depending on the convexity (K1 = K2 > 0) and concavity
(K1 = K2 < 0) properties of the local region of the model.

3.1.4 Combined local shape descriptor

The above three local features depict the local properties in different aspects, as
described above as well as in Section 2.2.2. To more comprehensively measure the
local information, a combined local shape descriptor F comprising the above three
features is devised,

F = (CI, δCI, SI). (4)

3.1.5 Local feature vector generation: Bag-of-words

We regard the combined local shape descriptor distribution of all the vertices of a
3D model, with respect to a set of centers, as its local feature vector VC. Based on
the Bag-of-Words framework, the local feature vector generation process includes
the following two steps.

(1) Codebook generation We cluster the combined local shape descriptors of
the vertices of all the 3D models in a 3D dataset into a set of class centers
(codebook) O1, O2, . . . , ONC based on K-means algorithm [2], as implemented
in [69], where NC is the number of codewords. In our experiment, L2 distance
metric, NC = 50 and 500 cluster centers for non-rigid and partial similarity
retrieval respectively and 100 maximum clustering iterations are adopted based
on the overall performance.

(2) Local feature vector formulation Based on the generated codebook (cluster
centers), we count the distribution VC of the local shape descriptors of all the
vertices of a 3D model with respect to the codewords in terms of maximum
similarity,

VC = (h1, h2, · · · , hNC ), (5)

where hi is the percentage of the local shape descriptors whose closest codeword
is Oi. To find the closest codeword, Canberra distance metric [30] is utilized to
measure the difference between two combined local shape descriptors Fi and
F j.

dF = 1

n

n∑
l=1

∣∣Fi(l) − F j(l)
∣∣

∣∣Fi(l) + F j(l)
∣∣ , (6)

where n is the dimension of Fi and F j, dF ∈ [0, 1].
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3.2 Geodesic distance-based global feature vector: VG

For non-rigid 3D model retrieval, by utilizing the eigenvalues of global Geodesic
Distance Matrix (GDM), Smeets et al. [39, 40, 62, 63] have achieved outstanding
retrieval performance. Global GDM considers the geodesic distances among all the
sample points of a 3D model to form a 2D square distance matrix. The eigenvalues
of the GDM is comparable to the spectrum of a 3D shape, which shows superior
performances when dealing with non-rigid 3D model retrieval. Hybrid approaches by
combining global and local features like [72] have been verified to be an effective way
to develop a more comprehensive shape descriptor to further improve the retrieval
performance. Considering this, we also compute a global Geodesic Distance Matrix-
based feature for a 3D model especially for non-rigid 3D model retrieval.

3.2.1 3D model simplif ication

To reduce computational cost for geodesic distance-based feature extraction, we
simplify each model by adopting the mesh simplification method proposed by
Garland and Heckbert [19]. It iteratively contracts vertices pairs under the control
of quadric surface error. It is efficient and preserves the most important features. In
experiments, we simplify the models to make they contain the same number (e.g.
1000 in our experiments) of vertices.

3.2.2 Geodesic-based global feature vector generation

We first compute the geodesic distances among all the vertices of a simplified model
to form a Geodesic Distance Matrix GDM based on the Dijkstra geodesic distance
computation method used in [27] and its implementation. Then we decompose the
GDM based on Singular Value Decomposition (SVD) and keep the first largest
k (e.g. 50 in our experiments according to its overall best retrieval performance)
eigenvalues as the global feature vector VG,

VG = (e1, e2, · · · , ek), (7)

where k is the threshold number of eigenvalues that we are interested in. Similarly,
Canberra distance (6) is applied to measure the distance between two VG vectors.

3.3 MDS-based ZFDR global feature vector: VZ

To further improve the retrieval performance, we apply multidimensional scaling
techniques on the models first before extracting their features and propose a new
global component shape descriptor in this section.

Non-rigid models have many variations in terms of deformations or articulations.
Similar as the idea of 3D model alignment which maps a 3D model with various
orientations into a canonical coordinate frame, we adopt multidimensional scaling
(MDS) techniques to map the non-rigid models into a new metric space, named
3D canonical form, to leverage their pose differences and deformation variations.
That is, we want to obtain an isometry-invariant feature representation for a 3D
model. Considering the characteristics of non-rigid models, we compute the geodesic
distance similarities among a set of sample points of a 3D model as the input
feature space of MDS. After transforming the geodesic distance features into a new
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Fig. 2 Three examples showing different results using different MDS algorithms based on geodesic
distance similarity

feature space based on the MDS technique, we utilize our previously developed
hybrid global shape descriptor ZFDR [35] to represent the shape of the transformed
3D model in the new feature space. ZFDR consists of four components: Zernike
moments feature, Fourier descriptor feature, Depth information feature and Ray-
based feature. It fuses both visual and geometric information of a 3D model. We
name this approach as MDS-ZFDR and the new global feature vector as VZ .

Different definitions of MDS techniques will have influences on the retrieval
performances of MDS-ZFDR. We have considered and tested three MDS methods
mentioned in Section 2.1.4: Classical MDS, Stress MDS and Sammon MDS based
on the MDS implementation in Matlab: “mdscale”. Figure 2 shows the obtained 3D
canonical form results using different MDS algorithms based on geodesic distance
similarity for three example 3D models. As can be seen, usually using Classical
MDS will result in more distortions. Compared to Classical MDS, Stress MDS
and Sammon MDS keep more features in the original shape, which contributes to
achieving better retrieval performances if we apply a retrieval algorithm for rigid
3D models on the obtained MDS-based canonical forms. In Section 5.1, we will
compare the performances using different MDS algorithms; while in Sections 5.2–
5.3 we will also demonstrate the superior performances of our MDS-ZFDR com-
ponent shape descriptor compared to the geodesic distance-based component shape
descriptor (Section 3.2), which is based on the existing Geodesic Distance Matrix-
based approach.

4 Non-rigid and partial 3D model retrieval algorithm based on a hybrid shape
descriptor and meta similarity

4.1 Retrieval algorithm

Given a query 3D model and a target 3D model database, we retrieve relevant 3D
models from the target database. Our 3D model algorithm is based on the hybrid
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shape descriptor presented in Section 3 and it is dedicated to non-rigid and partial
3D model retrieval. The complete retrieval algorithm is as follows.

(1) Curvature-based local feature vector VC and local feature distance matrix MC

computation For each query and target 3D model, we extract its curvature-
based local feature vector VC as described in Section 3.1. It is very efficient,
so we consider all the available vertices and use the original models directly.
Similarly, we compute the Canberra distance (6) between the local feature
vectors of a query model and a target model to form the curvature-based local
feature distance matrix MC.

(2) Geodesic distance-based global feature vector VG and global feature distance
matrix MG computation Based on the algorithm presented in Section 3.2, we
simplify each query or target model to make it has 1000 vertices and then
compute the Geodesic Distance Matrix (GDM) for the simplified model and
finally keep the largest 50 eigenvalues of the GDM as its global feature vector
VG. After that, the Canberra distance (6) between a query and a target model’s
global feature vectors VG is computed to form the geodesic distance-based
global feature distance matrix MG.

(3) MDS-based ZFDR global feature vector VZ and MDS-ZFDR global feature
distance matrix MZ computation Based on the Geodesic Distance Matrix
(GDM) computed in Step (2), we apply multidimensional scaling (MDS)
technique on each query and target model to obtain their 3D canonical forms
feature representations. After that, we extract the ZFDR hybrid shape descrip-
tor [35] on the new feature representation as the MDS-based ZFDR global
feature vector VZ . Finally, hybrid descriptor distances [35] between query and
target models are computed to form the MDS-ZFDR global feature distance
matrix MZ .

(4) Meta distance matrix generation and ranking We automatically find the weights
wC, wG and wZ for the distance matrices MC, MG, and MZ respectively to
generate a meta distance matrix M based on the approach in Section 4.2.

M = wC ∗ MC + wG ∗ MG + wZ ∗ MZ , (8)

where wC, wG and wZ are in the region of [0,1]. Finally, we sort all the models
in the database in ascending order based on their distances and output the
retrieval lists accordingly. The three weights wC, wG and wZ are needed to be
computed only once for each target database. If the query database is available,
we use it directly as queries to compute the weight values, otherwise, we use the
target models as queries. For example, in our experiments, we use the target
models directly in Section 5.2 and use the query database in Section 5.3. In
fact, based on the comparison experiments on the SHREC’11-Non-rigid and
SHREC’10-Non-rigid benchmarks (Section 5), we also find that this approach
achieves similar effect as dividing the benchmark into test and train datasets.
However, if based on the test and train scheme, we cannot perform a compar-
ative evaluation with existing algorithms on the three benchmarks in Section 5.
Since there is only a minor difference in the retrieval performance, we still base
on the above optimization scheme to test our retrieval algorithm.
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4.2 Meta similarity by particle swarm optimization

The simplest method to find the optimal weights for different features is by per-
forming a brute-force search. We can uniformly sample the values by adopting a
fixed step. The drawback of the brute-force search is the high computational cost.
For example, in order to find a result with an accuracy of �δ (e.g. 0.01) for N (e.g.
3) weights, we have to sample at least at a step of �δ (e.g. 0.01), which means
( 1

�δ
+ 1) · ( 1

�δ
+ 2)/2 (e.g. 5151) combinations. What’s more, we also find that to

reach an optimal weight assignment, a step of at least 0.01 is needed, which means a
lot of computational time. For example, it takes around 4 hours for a computer with
an Intel Xeon CPU X5675 @3.07 GHz 3.06 GHz (2 processors) and 24G memory to
search for only three optimal weights for a database with just 600 models. As such,
the brute-force search is not the ideal method for finding the optimal weights.

To efficiently find the optimal weights, we develop a weight assignment method
based on Particle Swarm Optimization (PSO) [14] which is a swarm intelligence
optimization technique by imitating the behavior of a flock of birds searching for
a piece of food in a region. Each bird learns from its neighboring birds and updates
itself based on the position of the bird nearest to the food. PSO has been found to be
robust and fast in solving non-linear and non-differentiable problems [59]. We also
find that PSO-based approach can find the optimal values robustly and efficiently.
Our PSO-based weight assignment for the meta distance matrix generation is as
follows.

(1) PSO initialization We initialize the number NP and positions of a set of
search particles {x = (wC, wG, wZ )} and then compute the private best for each
particle and current global best based on all the private bests. In experiments,
we uniformly distribute the search particles within the search region of {[0,1],
[0,1], [0,1]}. We regard the �NP/3� nearest neighbors of a search particle as its
neighborhood, based on which we compute its private best. Finally, we also set
the maximum search iterations Nt.

(2) Update particles We update the position of each particle by adopting a similar
strategy as [59],

x(i + 1) = x(i) + s · v(i), (9)

v(i + 1) = ω ∗ v(i) + c1 · r1 · (xp(i) − x(i))

+c2 · r2 · (xg(i) − x(i)). (10)

x(i) and v(i) are the position and velocity of a particle; the velocity update step
s is inversely proportional to the current iteration number i,

s = Nt − i
Nt

+ c, (11)

where Nt is the maximum search iterations and c is a constant variable and in
experiments we choose c to be 0.5 according to the trade-off between speed
and performance. r1 and r2 are random variables between 0 and 1; xp and
xg are the particle positions of private and global bests. c1 and c2 are non-
negative constants, typically c1 = c2 = 2 [14]. The inertia-weight ω is a trade-off
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between the global and local search abilities. Bigger ω indicates more powerful
global search ability and less dependency on the initial locations of the search
particles, while smaller ω means finer search within a local area. Similar as [59],
we linearly decrease ω from 1.4 to 0 according to the iteration number i,

ω = ωmin − ωmax

Nt
· i + ωmax, (12)

where ωmax = 1.4 and ωmin = 0. The new position �x(i + 1) may be out of the
search area, as such we clamp it by subtracting (if larger than 1) or adding (if
smaller than 0) 1 .

(3) Search evaluation Based on the new position of each particle, we assign the
corresponding weights wC, wG and wZ , and compute the meta distance matrix
based on (8) and thus the corresponding retrieval performance metrics, such
as First Tier (FT) [35, 60] or mean Normalized Discounted Cumulative Gain
(NDCG) [25], and regard it as the PSO fitness value to evaluate the weight
assignment result. After that, we update its private best as well as the global
best based on all the private bests.

(4) Result verification If the maximum iteration number Nt has been reached, we
stop and output the position of the current global best as the optimal weight
assignment result and also output the corresponding optimal meta distance
matrix M and retrieval performance metrics; otherwise, go to step (2) to
continue the search.

The complexity of our POS-based weight assignment algorithm is O(NP · Nt). Np

is the number of search particles and Nt is the iteration number. Typically, Np is
set to be in the range of [20, 40] and for most problems 10 particles are enough
to obtain a good enough optimization result. Nt is also relatively small for our
algorithm. For example, we only perform 10 iterations in our experiments. Therefore,
O(NP · Nt) indicates a low complexity. What’s more, we only need to perform the
PSO-based weight optimization algorithm once for each target database, which will
not incorporate additional online retrieval time.

5 Experiments and discussions

To investigate the performance of our algorithm in terms of non-rigid and partial 3D
model retrieval, we choose to use the following three benchmarks.

(1) SHREC’11-Non-rigid the benchmark for the SHREC 2011 non-rigid 3D water-
tight models retrieval track [39, 40]. It contains 600 watertight and deformable
models, classified into 30 classes, each with 20 models.

(2) SHREC’10-Non-rigid the database for the SHREC 2010 non-rigid 3D shape
retrieval track [41]. It comprises 200 selected articulated models from the
McGill 3D Shape Benchmark (MSB) [61] which is to test the performance of
articulated models, such as humans and ants. The 200 models are evenly divided
into 10 classes.

(3) SHREC’07-Partial the benchmark used in the SHREC 2007 partial matching
track [70]. The target dataset has 400 watertight models, divided into 20 classes,
each with 20 models. The query dataset comprises 30 models by combining the
parts of two or more models of the target database.
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To comprehensively evaluate the non-rigid 3D model retrieval results, we employ
the following performance metrics including Precision-Recall (PR) diagram, Nearest
Neighbor (NN), First Tier (FT), Second Tier (ST), Discounted Cumulative Gain
(DCG) and Average Precision (AP) [35, 60]. We use the Normalized Discounted
Cumulative Gain (NDCG) [25, 35] metric to evaluate the performance of partial
retrieval results.

5.1 Different MDS approaches

Due to different definitions of MDS techniques, the resulting 3D canonical forms
will be different and so it is with the corresponding retrieval performances based
on the 3D canonical forms. As demonstrated in Fig. 2, Stress MDS can keep more
original details and thus will improve the retrieval performances of our MDS-
ZFDR algorithm. We have verified this on both non-rigid and partial retrieval
benchmarks. Figure 3a, b and Table 1 compare their Precision-Recall diagram and
other five performance metrics on the SHREC’11-Non-rigid and SHREC’10-Non-
rigid benchmarks, respectively; while Fig. 3c compares their NDCG performance on
the SHREC’07-Partial benchmark. As can be seen from both Fig. 3 and Table 1,
Stress MDS-ZFDR significantly outperforms either Classical MDS-ZFDR or Sam-
mon MDS-ZFDR, in almost all the retrieval metrics. Based on this, we choose Stress
MDS in our retrieval algorithm and the rest experiments. In addition, by comparing
the performances of different MDS-ZFDR algorithms with ZFDR, we also find that
employing MDS techniques to transform the non-rigid models into a new feature
space based on geodesic distances significantly improves the retrieval performances.

5.2 Non-rigid 3D model retrieval

Geodesic distance is invariant to model deformation, which makes it has advantages
in non-rigid 3D model retrieval. This means that we should increase the weights wG

and wZ for the geodesic distance-based features during the retrieval. While, adding
curvature-based features will probably further improve the retrieval performance.
However, it is non-trivial to find an optimal weight assignment for these three
features, let alone for more features. Thus, PSO-based algorithm (Section 4.2) is
utilized to train the weights. We set NP = 10, Nt = 10, and select First Tier as the
PSO fitness value to evaluate search results. Totally, we only have NP+NP · Nt =
110 iterations. Based on the same number of iterations, brute-force method can
only have a precision of �δ = 0.075 for the weight values, let alone the retrieval
performances.

5.2.1 SHREC’11-Non-rigid benchmark

Based on the algorithm in Section 4.2, we find the optimal weights values: wC =
0.5390, wG = 0.2642, wZ = 0.1978. Optimal First Tier value is 0.935174.

We compare with six approaches in the SHREC 2011 Non-rigid track which adopt
different shape descriptors from our hybrid shape descriptor or its components.
They are: (1) Features on Geodesic (FoG) method based on diffusion distance
and manifold ranking technique; (2) Local feature-based approach T-NoNorm-
40Coef by applying the Laplace-Beltrami Operation (LBO) on the local patches and
adopting the Bag-of-Features (BoF) paradigm; (3) MDS-CM-BOF algorithm based
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Fig. 3 Precision-Recall
diagram performance
comparison on the
SHREC’11-Non-rigid,
SHREC’10-Non-rigid and
SHREC’07-Partial
benchmarks
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(a) SHREC’11-Non-rigid benchmark
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(b) SHREC’10-Non-rigid benchmark
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Table 1 Other performance metrics comparison on the SHREC’11-Non-rigid and SHREC’10-Non-
rigid benchmarks

Methods NN FT ST DCG AP

SHREC’11-Non-rigid
Classical MDS-ZFDR 96.0 74.7 84.7 91.5 82.7
Stress MDS-ZFDR 98.5 84.0 92.6 95.6 90.6
Sammon MDS-ZFDR 99.0 78.9 88.1 94.3 87.6
ZFDR 91.2 48.5 58.1 79.2 58.8

SHREC’10-Non-rigid
Classical MDS-ZFDR 96.0 71.3 88.7 92.6 83.9
Stress MDS-ZFDR 99.0 81.7 95.4 96.5 91.8
Sammon MDS-ZFDR 98.5 80.2 95.1 95.7 90.5
ZFDR 92.5 60.1 74.5 86.6 72.7

on multidimensional scaling technique, clock matching and BoF framework; (4) Bag
of Geodesic Histograms (BOGH) method by utilizing the BoF technique on the
normalized geodesic distances on the geodesic paths; (5) Multi-resolution Localized
Statistical Features (MLSF) based on a set of localized statistical features and the
BoF framework; (6) ShapeDNA (OrigM-n12-normA) which is based on the LBO
spectrum (eigenvalues) analysis of a mesh; (7) Heat Kernel Signature (HKS)-based
interest points detection and feature extraction method; (8) Patch-BOF algorithm
utilizing geodesic distance-based features on the local patches and the BoF para-
digm. We also compare with ConTopo++ [58]. In addition, we compare with the
performances of the three component features of our hybrid shape descriptor, that
is, comparing the performances of meta distance matrix M, curvature-based local
feature distance matrix MC, geodesic distance-based global feature distance matrix
MG and MDS-ZFDR global feature distance matrix MZ . Figure 4 compares their
Precision-Recall diagram performances while Table 2 lists their other performance
metrics.

As can be seen from Fig. 4a and Table 2, our hybrid shape descriptor and meta
similarity-based retrieval algorithm outperforms all the six participating approaches
in the SHREC 2011 Non-rigid track as well as ConTopo++. Based on the results
shown in Fig. 4b and Table 2, we also find that our approach evidently improves the
retrieval performances, in terms of all the employed metrics, for non-rigid 3D model
retrieval. In addition, we find that our proposed component shape descriptor MDS-
ZFDR (MZ ) has achieved the best overall performance among the three component
features.

Among the 30 classes of the benchmark, our algorithm performs well in retrieving
23 classes. It has average performances for “ant”, “bird2”, “gorilla” and “woman”
classes and relatively lower performance for the rest three classes: “cat”, “dinosaur”
and “man”. Figure 5 shows one retrieval example for each type.

5.2.2 SHREC’10-Non-rigid benchmark

Similarly, we find the optimal weights values: wC = 0.2314, wG = 0.3181, wZ = 0.4506;
optimal First Tier value is 0.8589.

We compare with the three participating methods (six runs) of the SHREC
2010 non-rigid 3D shape retrieval track [41]: (1) MR-BF-DSIFT-E and BF-DSIFT-
E proposed by Ohbuchi and Furuya [17], which are based on manifold ranking
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Fig. 4 Precision-Recall
diagram performance
comparison on the
SHREC’11-Non-rigid
benchmark
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(a) Our retrieval algorithm and other methods
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M: Meta distance matrix
MC: Curvature−based local feature distance matrix

MG: Geodesic distance−based global feature distance matrix

MZ: MDS−ZFDR hybrid feature distance matrix

(b) Hybrid shape descriptor and its three components

(MR) technique, dense SIFT (DSIFT) feature extraction on the view images and
extremely randomized tree (E) for the feature vector quantization; (2) DMEVD-
run1, DMEVD-run2 and DM-EVD-run3 proposed by Smeets et al. [63], as described
in Section 2.1.1; (3) CF proposed by Wuhrer and Shu [41, 73] which deforms a mesh
into pose-invariant Canonical Forms (CF) based on the multidimensional scaling
technique by adopting a coarse-to-fine strategy and measures the nearest neighbor
Euclidean distance between meshes.

Similarly, we also compare with ConTopo++ [58] and the three component
features of our hybrid shape descriptor. Figure 6 and Table 3 compare the Precision-
Recall diagram and other five performance metrics, respectively.

Similarly, as shown in Fig. 6b, we find that the PSO-based weight assignment
algorithm result in a significant improvement in terms of all the retrieval performance
metrics. Our algorithm apparently outperforms four runs of the SHREC 2010
non-rigid track including BF-DSIFT-F, DMEVD-run2, DMEVD-run3 and CF. Its
Precision-Recall diagram performance is very close to that of DMEVD-run1. Our
algorithm is also comparable to the remained two algorithms MR-BF-DSIFT-E and
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Table 2 Other performance metrics comparison on the SHREC’11-Non-rigid benchmark

Methods NN FT ST DCG AP

Our 99.8 93.5 98.5 98.9 97.5
ConTopo++ 99.3 88.5 95.2 98.1 94.7
FOG+MRR 96.0 88.1 94.6 95.9 93.0
T-NoNorm-40Coef 95.5 67.2 80.3 89.7 78.1
MDS-CM-BOF 99.5 91.3 96.9 98.2 96.0
BOGH 99.3 81.1 88.4 94.9 89.1
MLSF 98.7 80.9 87.9 94.8 88.2
OrigM-n12-normA 99.2 91.5 95.7 97.8 95.5
HKS 83.7 40.6 49.7 73.0 52.3
PatchBOF_150 74.8 64.2 83.3 83.7 74.1
M_C 93.3 71.0 86.7 91.3 81.8
M_G 99.3 81.4 88.1 95.3 89.4
M_Z 98.5 84.0 92.6 95.6 90.6

ConTopo++ which have top performances. As can be seen from Figs. 4b and 6b, on
the SHREC’11-Non-rigid benchmark comprising non-rigid models with or without
articulation, MG achieves comparable performance as MZ , while for this non-rigid
benchmark consisting of only articulated models, MG is apparently inferior to MZ .
This should be one reason that our hybrid shape descriptor cannot outperform
all other comparing approaches on this benchmark. It also shows MDS-ZFDR’s
superior retrieval performance.

For the 10 classes of the benchmark, our algorithm performs well in 6 classes:
“hands”, “humans”, “pliers”, “spectacles”, “spiders” and “teddy” and has relatively
inferior performances in retrieving the remained 4 classes: “ants”, “crabs”, “octo-
puses” and “snakes”. Figure 7 shows one retrieval example for each type. Table 4
gives the timing information of our retrieval algorithm on the SHREC’11-Non-rigid
and SHREC’10-Non-rigid benchmarks based on a machine with an Intel Xeon CPU
X5675 @3.07 GHz 3.06 GHz (2 processors) and 24G memory.

5.3 Partial similarity 3D model retrieval

Since NDCG is used to evaluate the partial retrieval performance, we use the mean
NDCG over all the 400 target models to evaluate search results. Because a query

(a) Good performance example (armadillo)

(b) Average performance example (woman)

(c) Lower performance example (cat)

Fig. 5 Non-rigid retrieval examples with different types of retrieval performances on the SHREC’11-
Non-rigid benchmark. The first model in each row is the query model, and for each query the top 20
retrieved models are listed
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Fig. 6 Precision-Recall
diagram performance
comparison on the
SHREC’10-Non-rigid
benchmark
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(a) Our retrieval algorithm and other methods
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M: Meta distance matrix
M

C
: Curvature−based local feature distance matrix

M
G

: Geodesic distance−based global feature distance matrix

M
Z
: MDS−ZFDR hybrid feature distance matrix

(b) Hybrid shape descriptor and its three components

model (e.g. the query models in Figs. 9, 10 and 11) comprises parts of several
models of different classes, the ground truth [70] classifies the 40 target classes
into “relevant”, “marginally-relevant” and “non-relevant” for each query model and
correspondingly assign different relevance scores of “2”, “1” and “0”, which are used
to compute NDCG.

Table 3 Other performance metrics comparison on the SHREC’10-Non-rigid benchmark

Methods NN FT ST DCG AP

Our 99.5 85.9 96.3 97.6 94.1
ConTopo++ 99.5 90.7 97.8 97.8 97.6
MR-BF-DSIFT-E 98.5 90.9 96.3 97.6 95.4
BF-DSIFT-E 98.0 76.6 89.2 94.1 86.3
DMEVD-run1 100.0 86.1 95.7 97.7 94.1
DMEVD-run2 99.5 78.8 94.4 96.1 90.0
DMEVD-run3 96.0 71.9 85.1 92.0 82.7
CF 92.0 63.5 78.0 87.8 75.2
M_C 92.5 58.4 74.4 85.6 70.5
M_G 95.5 72.7 89.6 92.9 84.5
M_Z 99.0 81.7 95.4 96.5 91.8
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(a) Good performance example (humans)

(b) Inferior performance example (octopuses)

Fig. 7 Non-rigid retrieval examples with different types of retrieval performances on the SHREC’10-
Non-rigid benchmark. The first model in each row is the query model, and for each query the top 20
retrieved models are listed

Unlike non-rigid model retrieval, in this case, curvature-based local features
will contribute more for partial 3D model retrieval. Similarly, we optimize their
weights based on PSO after computing the curvature-based local feature distance
matrix MC, geodesic distance-based global feature distance matrix MG and MDS-
ZFDR global feature distance matrix MZ . Similarly, we set NP = 10 and Nt = 10.
The optimal weights values are as follows: wC = 0.4799, wG = 0.1500, wZ = 0.3701;
optimal mean NDCG is 0.6620. Similar as Section 5.2, the NDCG performance
comparisons with the participants in the SHREC 2007 partial matching track [70]
and other approaches mentioned in [35] including ZFDR [35], RPU [67], BoF [68],
ERG [5] and CORNEA [12], as well as the hybrid shape descriptor’s components are
shown in Fig. 8a and b, respectively. Based on the comparison results in Fig. 8, we can
draw a similar conclusion as that of the non-rigid retrieval experiments in Section 5.2
for the partial similarity retrieval. The disparity between our proposed MDS-ZFDR
and the geodesic-distance based component shape descriptor MG is even obvious
on this partial retrieval scenario, which also shows the robust performance of our
MDS-ZFDR feature in retrieving both non-rigid and partial 3D models. Figures 9–
11 compare the results of three partial matching examples using RPU, ZFDR and
our method.

5.4 Discussions

Our hybrid shape descriptor contains two features (VG and VC) specially designed
for representing non-rigid models and partial similarity matching, respectively. It
also incorporates a general feature (VZ ) which achieves superior and robust per-
formances for both non-rigid and partial 3D model retrieval. The three features
are combined based on an automatic weighting optimized by PSO technique, which
makes our hybrid shape descriptor versatile in different scenarios.

Table 4 Timings information of our hybrid shape descriptor on different databases: for a query
model, tc, tg and tz denote the feature extraction time for the curvature-based local feature VC ,
geodesic distance-based global feature VG and MDS-based ZFDR global feature VZ ; t f , tm and t
denote the total feature extraction time, feature matching time between the query model and all the
models in the database, and response time for one query model, respectively

Database tc tg tz t f tm t

SHREC’11-Non-rigid 1.6 1.1 1.4 4.1 0.01 4.1
SHREC’10-Non-rigid 3.5 1.1 1.2 5.8 0.006 5.8

All the digits are in the unit of seconds
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Fig. 8 NDCG performance
comparison on the
SHREC’07-Partial benchmark
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(a) Our retrieval algorithm and other methods
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M: Meta distance matrix
MC: Curvature−based local feature distance matrix

MG: Geodesic distance−based global feature distance matrix

MZ: MDS−ZFDR hybrid feature distance matrix

(b) Hybrid shape descriptor and its three components

Nevertheless, our approach has some limitations. For example, for some types
of models, such as the articulated models benchmark SHREC’10-Non-rigid, our
retrieval performance is not the best. This shows there exists room for further
improvement on the design of our component features, especially for the geodesic
distance-based feature VG and curvature-based feature VC. Even for the best-
performing component feature VZ , we may achieve better performance if applying
another feature descriptor on the transformed meshes based on MDS.

Secondly, our current implementation of the proposed algorithm in Section 4.1
does not consider a large scale retrieval scenario. However, as presented in Table
4, on the SHREC’11-Non-rigid benchmark it takes 0.01 second for the feature
matching between a query model and all the 600 target models in the dataset.
Thus, we can estimate the feature matching time for the retrieval on a target 3D
model dataset containing 10,000 and 100,000 models are only 0.17 and 1.7 seconds,
which meets the requirements of a real-time and interactive application. In addition,
our implementation is not optimized, thus it can be much faster by adopting a
parallel feature distance computations between the query model and the target
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Fig. 9 A partial matching example showing the top-7 retrieval results using RPU (1st row), ZFDR
(2nd row) and Our (3rd row) method. The first model in each row is the query model

models. Therefore, to avoid the retrieval performance decrease because of feature
quantization, in general we can directly use the original approach presented in the
paper for a large scale retrieval application.

There are three component features in the hybrid 3D shape descriptor: curvature-
based local feature, geodesic distance-based and MDS-based global features. The
curvature-based local feature extraction utilizes the Bag-of-Words framework, which
involves K-means clustering. If the dataset is very large, even if we adopt the
Hierarchical K-means clustering algorithm, it is still time-consuming to cluster a very
large number of local feature vectors. In this case, we can utilize the inverted tree
technique. We cluster the curvature-based local features of all the target models into
a set of words (code centers), and then we build an inverted indexing tree for all the
target models according to the code centers, thus each target model will be inserted
into a list of the code that the target model contains, finally for each query model we

Fig. 10 Another partial matching example showing the top-7 retrieval results using RPU (1st row)
method and the top-9 retrieval results using ZFDR (2nd row) and our (3rd row) method. The first
model in each row is the query model
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Fig. 11 Another partial matching example showing the top-7 retrieval results using RPU (1st row)
method and the top-9 retrieval results using ZFDR (2nd row) and our (3rd row) method. The first
model in each row is the query model

only need to look up the tree according to the available codes that the query model
contains and accumulate the hits on the target models in the lists of the corresponding
codes.

6 Conclusions and future work

Non-rigid and partial 3D model retrieval are two important and challenging research
directions in the field of 3D model retrieval. While different approaches based on
either geodesic distance or some local features have been proposed to deal with
either of the above two retrieval problems, little work has been done in developing a
hybrid shape descriptor that works for both cases, especially in an automatic way. We
have found that geodesic distance-based global features, MDS-based ZFDR global
features and curvature-based local features have shown different performances in
non-rigid and partial 3D model retrieval. To utilize these three features and make
them compliment each other, we develop a hybrid shape descriptor comprising the
three types of features and automatically combine their feature distance matrices to
form a meta distance matrix based on Particle Swarm Optimization.

Experimental results based on two latest non-rigid 3D model retrieval bench-
marks and a partial 3D model retrieval dataset as well, demonstrate the effectiveness
and advantages of our framework. We have achieved outstanding performance
on each benchmark. The good properties of superior performances and better
robustness of our proposed MDS-ZFDR feature also have been established through
the experiments. Our framework applies to two different, important and interesting
retrieval scenarios and improves the retrieval performances based on an automatic
integration strategy. The idea is general and it can be applied to integrate even more
features for developing a single algorithm for both non-rigid and partial 3D model
retrieval, which is also among our future work. Another interesting work is to test
the performances of concatenating our global and local feature vectors directly to
form a hybrid feature vector by assigning appropriate weights based on our Particle
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Swarm Optimization algorithm and then perform a comparative evaluation with the
retrieval algorithm proposed in the paper.
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